
CHAPTER 1 

Basics of Digital Electronics 

The Electronics circuits and systems are of two kinds namely analog and digital. Analog 

circuits are those in which voltages and currents vary continuously through the given range. 

For example, signal generator, power supplies and electric motors. In digital circuits, the 

voltage levels assume a finite number of distinct values. These are often called as switching 

circuits because the voltage levels in digital circuits are assumed from one value to another 

instantaneously. 

1.1 Introduction To Digital Electronics 

Digital electronics is a field of electronics involving the study of digital signals and the 

engineering of devices that use or produce them. This is in contrast to analog 

electronics and analog signals. 

The binary number system was refined by Gottfried Wilhelm Leibniz (published in 1705) and 

he also established that by using the binary system, the principles of arithmetic and logic 

could be joined. Digital logic as we know it was the brain-child of George Boole in the mid-

19th century. In an 1886 letter, Charles Sanders Peirce described how logical operations 

could be carried out by electrical switching circuits. Eventually, vacuum tubes replaced relays 

for logic operations. Lee De Forest's modification, in 1907, of the Fleming valve can be used 

as an AND gate. Ludwig Wittgenstein introduced a version of the 16-row truth table as 

proposition 5.101 of TractatusLogico-Philosophicus (1921). Walther Bothe, inventor of 

the coincidence circuit, shared the 1954 Nobel Prize in physics, for the first modern 

electronic AND gate in 1924. 

Digital electronic circuits are usually made from large assemblies of logic gates. Digital 

describes electronic technology that generates, stores, and processes data in terms of two 

states: 1 and number 0. 

Digital electronics deals with the electronic manipulation of numbers, or with the 

manipulation of varying quantities by means of numbers. Because it is convenient to do so, 

today's digital systems deal only with the numbers 'zero' and 'one', because they can be 

represented easily by 'off and 'on' within a circuit. 



Digital stand for digit, digital electronics basically has two possible conditions which are 0 

(low logic) and 1 (high logic). These systems use digital signals that are composed of 

mathematical features to work.  

1.2  Need of Digital 

Almost all devices, used on a daily basis make use of digital electronics in some capacity. 

Digital electronics simply refers to any kind of circuit that uses digital signals rather than 

analogue. It is constructed using circuits calls logic gates, each of which performs a different 

function. The circuit will make use of different components that are all standard, but that are 

put together in different combinations to achieve the desired result. Its circuit will also 

include resistors and diodes, which are used to control current and voltage.  

Even many of our household items make use of digital electronics. This could include 

laptops, televisions, remote controls and other entertainment systems, to kitchen appliances 

like dishwashers and washing machines. Computers are one of the most complex examples 

and will make use of numerous, complex circuits. There may be millions of pathways within 

the circuit, depending on how complex the computer and its functions need to be.  

Digital Electronics is very important in today’s life because if digital circuits compared to 

analog circuits are that signals represented digitally can be transmitted without degradation 

due to noise.Many systems use a maximum of analog and digital electronics to take 

advantage of each technology. For example: A typical CD player accepts digital data from 

the CD drive and converts it to an analog signal for amplification.  

 

 
Figure 1 How a CD player works? 

 



Digital Electronics is very important in today’s life because if digital circuits compared to 

analog circuits, signals those are represented digitally can be transmitted without degradation 

due to noise.  

For instance, a continuous audio signal transmitted as a sequence of 1s and 0s, can be 

reconstructed without error, provided the noise picked up in tra

prevent identification of the 1s and 0s.

An hour of music can be stored on a

digital system information stored is easier than that of analog system.

analog in nature and at first sight; it seems use of analog is much better as compared to digital 

signal.  

But digital signals have various advantages over the analog signal like 

 Digital signal is used in communication process to

 Digital Signals carry more information per unit time as compared to analog signals.

 Quality of digital signal is better over long distance transmission.

 Use of bandwidth is less in case of transmission using digital signal

 Digital signals can be encrypted.

 Noise removal is easy in digital signals.

 

1.3 Merits and Demerits

Analog signal is a continuous signal as represented in figure 2, in which one time

quantity represents another time

values and natural phenomena such as earthquake, frequency, volcano, speed of wi
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Figure 2 Analog Signal  
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A digital signal is a signal that is used to represent data as a sequence of separate values at 

any point in time. It can only take on one of a fixed number of values. This type of signal 

represents a real number within a constant range of values and is presented in figure 3.

Characteristics of Analog Signal:

 These are time-varying electronic signals.

 Lowest and highest values which is either positive or negative.

 It is often either periodic or non

 Analog Signal works on continuous data.

 The accuracy of the analog signal isn’t high in comparison to the digital signal.

 It helps you to live natural or physical values.

 Analog signal output form is like Curve, L

meaningful to all or any. 

Advantages of Analog Signals: 

Here, are some pros/benefits of Analog Signals.

 It is Easier in processing.

 Analog Signals are best fitted to audio and video transmission.

 It has a coffee cost and is portable.

 It posses higher density.

 Not necessary in Analog Signals to shop for a replacement graphics board.

 It uses less bandwidth than digital sounds.

 It Provide more accurate representation of a sound.

 It is the natural sort of a 

A digital signal is a signal that is used to represent data as a sequence of separate values at 

any point in time. It can only take on one of a fixed number of values. This type of signal 

real number within a constant range of values and is presented in figure 3.

Figure 3 Digital signal 
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 It has less bandwidth.  

 Binary digits 0 and 1 represent the optical pulse for storing, processing and 

transmitting information.  

Disadvantages of Analog Signals:  

Here are cons/drawback of Analog Signals are as follows.  

 Analog tends to possess a lower quality signal than digital.  

 The cables are sensitive to external influences.  

 Analog wire is expensive and not easily portable.  

 In this, it has Low availability of models with digital interfaces.  

 Recording analog sound on tape is sort of expensive if the tape is broken.  

 It offers limitations in editing.  

 Tape is becoming hard to seek out.  

 It is quite difficult to synchronize analog sound.  

 Quality is definitely lost.  

 Data can become corrupted in analog signals.  

 Most of sound capturing devices such as phones etc which may become confusing 

to store a digital signal.  

 Digital sounds can cut an analog acoustic wave which suggests that you simply 

can’t get an ideal reproduction of a sound.  

 It offers poor multi-user interfaces.  

 Advantages of Digital Systems  

 Easier Designing: The Digital systems can be easily designed as they involve digital 

signals. These signals do not require exact value at a particular time but it consists of 

range of particular values of voltage. Thus, it comprises of basically two values 0 and 

1 i.e. high or low.  

 Noise Immune: Digital systems are noise immune because digital signal consists of 

range of particular values. Thus, when noise is introduced in the medium and digital 

signal and analog signal both passes through it. The analog signal will be affected 

more because it varies continuous with time so it is difficult to identify that noise has 

destroyed which value of voltage. While in case of digital system, noise effect the 



particular range of the signal thus, it is clear to identify the particular range of filtering 

is also easy in case of digital signals.  

 Information Storage is Simpler: The storage of information in digital systems is 

easy. It can be stored by latching thus; the it can be stored for a long period of time.  

 High Accuracy and Precision: The digital signal offers high accuracy and precision. 

This is because the processing of digital signal is done through the switching circuit. 

While in case of analog signals the processing and its output is highly dependant on 

circuit components. The accuracy obtained in analog circuits is restricted to 3-4 digits 

while in case of digital signals the accuracy is far more than the analog circuit.  

 Programmable: The digital systems are easily programmable but analog system 

becomes complex when excessive programming of components is done.  

Disadvantages of Digital Systems  

Everything comes up with pros and cons. Similarly digital systems to hold certain 

disadvantages which are as follows:-  

 Expensive: Digital systems are expensive because it involves switching elements.  

 Analog nature of Real World Entities:  We need to convert the digital output in analog 

form because all the real world entities are analog.  

 Digital electronics circuits require more energy than the analog circuits which are 

accomplish to do the same tasks. And so these are producing too much heat and so it 

increases the complexity of the digital electronics circuits 

 

PRACTICE QUESTIONS: 

Q1. Name some advantages of Digital Technology. 

Q2. Give examples of analog system. 

Q3. What is the difference between Analog and Digital Electronics? 

Q4. What are disadvantages of Analog systems? 

Q5. What are advantages of Digital systems? 

 



CHAPTER 2 

Number System 

Number system is an arranged set of numerals known as digits with defined rules for 

arithmetic operations like multiplication, addition, subtraction, etc. Array of digits makes an 

arbitrary number. Number has two parts-integer and fraction, separated by a radix point (.), 

known as decimal. 

𝑁௕ =  𝑑௡ିଵ 𝑑௡ିଶ … . 𝑑௜ … 𝑑ଵ 𝑑଴ ᇣᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇥ
ூ௡௧௘௚௘௥ ௣௔௥௧

.⏟
௥௔ௗ௜௫ ௣௢௜௡௧

𝑑ିଵ 𝑑ିଶ … . 𝑑ି௙ … . 𝑑ି௠ ᇣᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇥ
ி௥௔௖௧௜௢௡ ௣௔௥௧

 

 

0 ≤ ൫𝑑௜  𝑜𝑟 𝑑ି௙ ൯ ≤ 𝑏 − 1 

Where, 𝑁௕ is a number with base b. Number of digits in integer and fraction part is 

represented by 𝑛 and 𝑚 respectively. 𝑑௡ିଵ  is the Most Significant Digit (MSD) and 𝑑ି௠  is 

the least significant digit (LSD).  

Position of each digit in a number is assigned a specific weight or index. Leftmost digit with 

maximum positional weight is known as MSD. Rightmost bit with least positional weight is 

termed as LSD. Decimal number system, binary, octal and hexadecimal are commonly used 

number systems. These number systems are widely used in digital circuits, microprocessor 

and microcomputers. Therefore, it is useful to study the number systems for understanding, 

designing and analyzing the digital electronics.  

2.1 Decimal Number System 

Decimal number system is well known to all of us. It is a base 10 number system and 

arranged set of digits 0,1,2,3….,9. For representing the large numbers various digits can be 

placed at appropriate positions. Fractional part has weight of negative power of 10 whereas 

integer part has weight of positive power of 10. Decimal number is the sum of the products of 

the digits with their respective position weight. For example, 3452.453 is a decimal number 

which can be written as: 

 

3452.4533×103 + 4×102+5×101+ 2×100 + 4× 10-1 +5×10-2+ 2×10-3 



2.2 Binary Number System 

It is a positional weighted system with radix 2. It has only two symbols 0 and 1; termed as 

bits. Group of eight binary bits is known as Byte and group of four binary bits is known as 

nibble. Binary number system is preferred in digital systems because switching circuits have 

two states which can be represented by two binary digits 0 and 1. Transistors and diodes are 

two state devices; on-state is represented as 1 and off-state is represented as 0. Counting in 

binary system is written as sequence of 0 and 1. Four-bit binary counting (0000-1111) with 

their decimal equivalent is shown in Table1. 

Table 1. 4-bit Binary counting and decimal value 

Binary 

Number  

Decimal 

Number 

Binary 

Number  

Decimal 

Number 

0000 0 1000 8 

0001 1 1001 9 

0010 2 1010 10 

0011 3 1011 11 

0100 4 1100 12 

0101 5 1101 13 

0110 6 1110 14 

0111 7 1111 15 

 

Numbers from different number systems can be converted from one form to another. To 

differentiate the numbers in different number systems, base is written as a subscript to the 

number. 

2.3 Octal Number System 

Binary numbers are consisting of very long array of 0 s and 1s. It is difficult to deal with 

large array of binary bits. Handling of binary numbers is eased by grouping them into three 

digits. This group of three digit is termed as Octal with radix 8. Since, the base is 8 = 23, so 

every three group of 3 binary bits can be written as octal number. In the octal number 

system, the digits have following eight values 0, 1, 2, 3, 4, 5, 6 and 7. Table2 lists the binary 

counting. 



Table 2. Counting in Octal number system 

Octal Number Binary Number  Decimal 
Number 

0 000 0 
1 001 1 
2 010 2 
3 011 3 
4 100 4 
5 101 5 
6 110 6 
7 111 7 
10 001 000 8 
11 001 001 9 
12 001 010 10 

 

2.4 Hexadecimal Number System 

Similar to octal number system, hexadecimal numbers are also used to represent the binary 

numbers concisely. Base of this number system is 16. Independent symbols are 0,1,2, 

3….9, A, B, C, D, E, F. Binary number is grouped in four bits and referred as hexadecimal 

numbers.  Table3 lists the binary counting with equivalent hexadecimal numbers. 

Table 3. Hexadecimal Counting 

Hexadecimal 
Number 

Binary Number  Decimal 
Number 

0 0000 0 
1 0001 1 
2 0010 2 
3 0011 3 
4 0100 4 
5 0101 5 
6 0110 6 
7 0111 7 
8 1000 8 
9 1001 9 
A 1010 10 
B 1011 11 
C 1100 12 
D 1101 13 
E 1110 14 
F 1111 15 

2.5 Conversions 



2.5.1 Base Conversion  

Let's think more carefully what a decimal number means. For example, 1234 means that there 

are four digits and  4 is the  right-most no i.e. least significant digit, 1  is the left-most i.e. 

most significant digit. Then it can also be written as 

     Original Number:      1     2     3    4 

                           |     |     |    | 

     Digit Value: 1000   100    10    1 

          Value:         1000 + 200  + 30  + 4  = 1234 

 

or simply,  1*1000 + 2*100 + 3*10 + 4*1 = 1234 

Thus, each digit has a value: 10^0=1 for the least significant digit, increasing to 10^1=10, 

10^2=100, 10^3=1000, and so forth.  

Likewise, the least significant digit in a hexadecimal number has a value of 16^0=1 for the 

least significant digit, increasing to 16^1=16 for the next digit, 16^2=256 for the next, 

16^3=4096 for the next, and so forth. Thus, 1234 means that there are four digits; and the 

total is:  

     1*4096 + 2*256 + 3*16 + 4*1 = 4660 

Table 4 Conversion Table 

BIN    OCT   HEX   DEC 

---------------------- 

0000   00     0     0 

0001   01     1     1 

0010   02     2     2 

0011   03     3     3 

0100   04     4     4 

0101   05     5     5 



0110   06     6     6 

0111   07     7     7 

---------------------- 

1000   10     8     8 

1001   11     9     9 

1010   12     A    10 

1011   13     B    11 

1100   14     C    12 

1101   15     D    13 

1110   16     E    14 

1111   17     F    15 

 

2.5.2  Decimal to Binary Conversion 

Integer part of decimal number is converted into binary number by continuing divide by 2 

and keeping the track of remainders from bottom (leftmost) to top (rightmost). Fractional part 

is converted by multiplying the binary number with 2 and tracking the integer part. This 

process is explained with the given example. 

Example1: convert the given decimal numbers into binary numbers 

 (105.15)10 =(?)2 

Step1: conversion of integer part by division method 

(105) 10 =(1101001)2 

2 105 1 

2 52 0 

2 26 0 

2 13 1 

2 6 0 



2 3 1 

2 1 1 

Step2: conversion of fractional part by multiplication method  

(0.15) 10 =(001001)2 

 

 

Step3: writing the correct order 

   (105.15)10 =(1101001.001001)2 

Example2: Convert 152 into binary number 

2 152 0 

2 76 0 

2 38 0 

2 19 1 

2 9 1 

2 4 0 

2 2 0 

2 1 1 

(152)10 =(10011000)2 

2.5.3 Binary to Decimal conversion 

Binary number can be converted into equivalent decimal number system by using the 

positional weight assigned to each bit. Conversion of (1100.1011)2 into decimal number 

system is explained. 

Given 

fraction 

Product 

0.15 ×2 0.30 

0.30 ×2 0.60 

0.60 ×2 1.20 

0.20 ×2 0.40 

0.40 ×2 0.80 

0.80×2 1.60 



Example3: (1100.1011)2 = (?)10 

1100.1011= 1×23 + 1×22+0×21+ 0×20 + 1× 2-1 +0×2-2+ 1×2-3+ 1×2-4 

     = 8+4+0+0+0.5+0+0.125+0.0625 

                 = (12.6875)10 

Example4: (10110.001)2 = (?)10 

= (1×24)+(0×23)+(1×22)+(1×21)+(0×20)+(0×2-1)+(0×2-2)+(1×2-3) 

=(1×16)+(0×8)+(1×4)+(1×2)+(0×1)+ (0×1»2)+(0×1»4)+(1×1»8) 

=16+0+4+2+0+0+0+0.125 

=(22.125 )10 

2.5.4 Conversion of Octal Number to Binary Number 

To convert an octal number into binary, each octal digit is represented by three binary bits.  

Example 5: Convert (152)8 into binary number  
 
Given octal number                1 5 2  

Representation as group       001      101      010  

of three binary bits 

Result    (152)8=(001101010)2 
 

Example 6: Convert (357.52)8 into binary number system is explained. 

Given octal number                3 5 7 . 5  2 

Representation as group       011      101      111 .         101       010 

of three binary bits 

Result     (011101111.101010)2 

2.5.5 Conversion of Octal Number to Decimal Number System 

To convert octal number into equivalent decimal, each octal digit is multiplied by equivalent 

position weight and product is aggregated. For example, convert (4057.06)8 into decimal 

number. 

Example 7: Convert given octal number into decimal  



(152.25)8=(1×82)+(5×81)+(2×80)+(2×8-1)+(5×8-2) 

(152.25)8=64+40+2+(2×1»8)+(5×1»64) 

(152.25)8=64+40+2+0.25+0.078125 

(152.25)8=(106.328125)10 

Example 8: Convert given octal number into decimal  

(4057.06)8 = 4×83 + 0×82+5×81+ 7×80 + 0× 8-1 +6×8-2 

  = 2048+0+40+7+0+0.0937 

      = (2095.0937)10 

2.5.6 Conversion of Decimal Number System to Octal  

Mixed decimal number is converted separately. Integer decimal is divided successively by 8 

till quotient value is 0. Last remainder is written as most significant digit. Given decimal 

fraction is multiplied by 8 successively; integer of product from top to bottom is written as 

the equivalent octal fractional.  

Example 9:Convert (678.93)10 into octal number system 

Step1: conversion of integer part by division method and write remainder from bottom to 

top. 

(678)10 = (1246)8 

 

8 678 6 

8 84 4 

8 10 2 

8 1 1 

Step2: conversion of fractional part by multiplication method and write integer part of 

fraction from top to bottom.  

(0.93) 10 =(0.7341)8 

Given 
fraction 

Product 

0.93 ×8 7.44 
0.44×8 3.52 
0.52 ×8 4.16 
0.16 ×8 1.28 



 

Step3: writing the correct order. 

   (678.93)10 =(1246.7341)8 

Example10: Convert (152)10 into octal number system 

8 152 0 

8 19 3 

8 2 2 

 0  

(152)10=(230)8 

2.5.7 Conversion of Binary Number System to Octal   

Grouping of binary number is done for the binary to octal conversion. Integer part of binary 

number is grouped in three bits each starting from right to left. Fractional part of binary 

number is grouped from left to right. Each group is replaced with its equivalent octal digit. 

Example11:Convert (11011001111100.00110101)2 into octal number system 

Weight            21 421 421 421 421 . 421 421  421 

Groups  11 011 001 111 100 . 001 101 010 

Octal   3   3 1     7      4    .  1      52 

Result  (33174.152)8 

Example12: Convert (111110101011.0011)2into octal number system 

Firstly, we make pairs of three bits on both sides of the binary point. 

Groups111       110       101       011.001   100 
Octal        7           6           5            3  .     1         4 
Result  (7653.14)8 
 

2.5.8 Conversion of Hexadecimal Number to Binary Number 

To convert a hexadecimal number into binary, each digit is represented by four binary bits. 

Example 13: Conversion of (957.A2)16 into binary number system is explained. 

Given Hexadecimal number        9 5 7 .A  2 

Representation as group       1001      0101      0111 .         1010      0010 



of four binary bits 

Result     (100101010111.10100010)2 

2.5.9 Conversion of Hexadecimal Number to Decimal Number System 

To convert hexadecimal number into equivalent decimal, each hexadecimal digit is 

multiplied by equivalent position weight and product is aggregated. For example, convert 

(4057.06)16 into decimal number. 

Example14:(4057.06)16 = 4×163 + 0×162+5×161+ 7×160 + 0× 16-1 +6×16-2 

  = 16384+0+80+7+0+0.0234 

      = (16471.0234)16 

2.5.10 Conversion of Hexadecimal Number to Octal Number System 

Easiest way to convert the hexadecimal number into octal number is first binary conversion 

and then into octal number as explained in given example. 

Example 15:Convert (957.A2)16 into Octal number 

Given Hexadecimal number        9 5 7 . A  2 

Representation as group       1001      0101      0111 .         1010      0010 

of four binary bits 

Binary Number    (100101010111.10100010)2 

Group of three bits  100  101 010 111.101 000 100 

Octal number     4     5       2    7  .  5      0     4 

Result                                       (4527.504)8 

2.5.11 Conversion of Decimal Number System to Hexadecimal   

Mixed decimal number is converted separately. Integer decimal is divided successively by 

16 till quotient value is 0. Last remainder is written as most significant digit. Given decimal 

fraction is multiplied by 16 successively; integer of product from top to bottom is written as 

the equivalent octal fractional.  

Example 16:Convert (2598.675)10 into Hexadecimal number system 

Step1: conversion of integer part by division method and write remainder from bottom to 

top. 



(2598)10 = (A26)16 

Successive 

division 

Quotient Remainder 

2598÷16 162 6 

162÷16 10 2 

10÷16 0 10 is A in Hexadecimal 

Step2: conversion of fractional part by multiplication method and write integer part of 

fraction from top to bottom.  

(0.675) 10 =(0.ACCC)16 

Given fraction Product 

0.675 ×16 10.8  

0.800×16 12.8 

0.800 ×16 12.8 

0.800×16 12.8 

 

Step3: writing the correct order. 

   (2598.675)10 =(A26.ACCC)16 

2.5.12 Conversion of Binary Number System to Hexadecimal  

First grouping of binary number is done for the binary to hexadecimal conversion. Integer 

part of binary number is grouped in four bits starting from right to left. Fractional part of 

binary number is grouped from left to right. Each group is replaced with its equivalent 

hexadecimal digit. 

Example17:Convert (011001111101.00110101)2 into hexadecimal number system 

Weight                      8421  8421 8421 . 8421  8421  

Groups  011001111101 . 00110101 

Hexadecimal               6    7D.   35      

Result  (67D.35)16 

2.5.13 Conversion of Octal Number System to Hexadecimal  

The easiest way for octal to hexadecimal conversion is to first convert into binary and then 



binary into hexadecimal. 

Example18: Convert (757.42)8 into hexadecimal number 

Given Octal number             7   5     7 . 4  2 

Representation as group         111      101        111 .         100     010 

of three binary bits 

Binary Number   (111101111.100010)2 

Group of four bits  0001 1110 1111. 1000 1000 

Hexadecimal number       1     E       F  .    8       8 

Result                                            (1EF.88)16 

2.6 Signed and unsigned number 

In decimal number system, + sign before a number indicates it as a positive number and - 

sign before a number indicates it as a negative number. It is not convenient on computers. So, 

a proper mechanism is required to represent the negative numbers for binary number systems. 

There are two methods to represent the negative binary numbers: (i) Sign magnitude 

presentation (ii) complemented form.  

2.6.1 Sign magnitude representation: 

In sign magnitude one additional bit is added in front of number. Positive number is 

represented by 0 sign bit and negative number is represented by 1 as a sign bit. Some of the 

examples are shown in Table. 

(+1100101)2 (01100101) 

(+101.001)2 (0101.001)2 

(-10010)2 (110010)2 

(-110.101)2 (1110.101)2 

 

Example19: Represent the given numbers into sign magnitude format. (+41) ad (-41) 

     8-bits Binary equivalent of 41 = 00101001 

     



 Sign representation of (+41) = 0 0101001 

 

                                                   Sign bit       Magnitude 

 

      Sign representation of (-41) =       1 0101001 

 

                                                   Sign bit       Magnitude 

2.6.2 Complement form representation 

There are two complement form representation. 

 Diminished Radix Complement (DRC) or (r-1) – complement. DRC is known as 

one’s-complement in binary number system and 9’s complement in decimal 

number system. 

 The 9’s complement of 546700 is (999999-546700=453299) 

 The 1’s complement of 1011000 is 0100111. 

 Radix Complement (RXC) or r-complement Binary numbers. RXC is known as 

two’s-complement in binary number system and 10’s complement in decimal 

number system. The r's complement is obtained by adding 1 to the (r-1) 's 

complement.  

 The 10’s complement of 546700 is ((999999-546700) +1=453300) 

 The 2’s complement of 1011000 is 0100111+1=0101000. 

One’s complement representation: If each 1 of a binary number is replaced by 0 and each 0 

by 1, the resultant is the 1’s complement of given number. This method is used for signed 

number representation. The maximum positive numbers represented in 1’s complement form 

is (2n-1 -1) and the negative numbers is – (2n-1 -1). In one’s complemented form, maximum 

seven positive and seven negative numbers can be represented by four binary bits. 

Example19: Represent the given numbers in 1’s complement form: +7, -7, +8, -8, +15, -

15. 

Solution: 



Decimal Signed 1’s 

Complement 

Decimal Signed 1’s 

Complement 

+7 0111 -7 1000 

+8 01000 -8 10111 

+15 01111 -15 10000 

 

Two’s Complement representation: It is obtained by adding one in the one’s complemented 

form of the binary number. For example, 2’s complement of 0110 is 1010. Since 0110 is 

(+6)10, therefore, 1010 is (-6)10 in 2’s complemented form. MSB is 1, number is negative 

whereas if the MSB is 0 the number is positive.  The maximum positive numbers represented 

in 1’s complement form is (2n-1 -1) and the negative numbers is – (2n-1). In two’s complement 

form, maximum seven positive and eight negative numbers can be represented by four binary 

bits. 2’s complement of a 2’s complement number is number itself.  

Example 20: Find two’s complement of given numbers: 

Number 1’s complement 1’s complement+1 = 2’s complement  

01100100 10011011 10011011+1 = 10011100 

10010010 01101101 01101101+1 = 01101110 

11011000 00100111 00100111+1 = 00101000 

01100111 10011000 10011000+1 = 10011001 

 

Example 21: Represent (-17)10 in sign magnitude, one’s and two’s complemented form. 

Solution: (+17)10 in sign magnitude is represented as (010001)2.  

(-17)10 in sign magnitude is represented as (110001)2. 

 (-17)10 in 1’s complemented form is (101110) 2. 

(-17)10 in 2’s complemented form is (101111) 2. 

2.7 Binary Arithmetic 

Mathematical operations like addition, subtration, multiplication and divison can be 

performed on binary numbers. Binary numbers have only two symbols, thus calculation is 

much simpler.  



2.7.1 Binary Addition  

Binary addition follows some specific rules which are given in Table4 below. Similar to the 

decimal addition carry is added with next higher order bits. 

Table 5: Binary Addition rules 

Augend (A)  Addend (B) Sum (S) Carry (C) Output 

0 0 0 0  0 

0 1 1 0  1 

1 0 1 0  1 

1 1 0 1 10 

 

Example 22: (i) Add 1011.01 with 1100.10 

                     (ii) Add 01101010, 00001000,10000001, and 11111111. 

Solution (i): 

 1 0 1 1 . 0 1 

+ 1 1 0 0 . 1 0 

1 0 1 1 1 . 1 1 

Output = 10111.11    

Solution (ii): 

Carry->     1     

 

1 

1 1 1 1 1 1 1 _ 

  0 1 1 0 1 0 1 0 

  0 0 0 0 1 0 0 0 

  1 0 0 0 0 0 0 1 

 + 1 1 1 1 1 1 1 1 

 1 1 1 1 1 0 0 1 0 

The sum= 111110010 

 



From this example it can be concluded that, even number of one’s in column gives 0 sum bit 

and odd number of one’s in column gives 1 as sum bit. Every pair of one’s generate a carry. 

2.7.2 Binary Subtraction 

Rules for binary subtraction are listed in Table5 below. 

Table 6: Binary Subtraction rules 

Minuened Subtrahend Difference Borrow 

0 0 0 0 

0 1 1 1 

1 0 1 0 

1 1 0 0 

 

Example 23: Subtract 111.111 from 1010.010 

1 0 1 0 . 0 1 0 

- 1 1 1 . 1 1 1 

0 0 1 0 . 0 1 1 

Subtract 110 from 1011 

2.7.3 Binary Multiplication 

Binary multiplication is similar to the decimal multiplication with following rules: 0×0 =0,  

0×1 =0,  1×0 =0, 1×1=1.  

Example24: Multiply 100.1 by 110.1 using binary multiplication 

   1 0 0 . 1  Multiplicand 

   1 1 0 . 1  Multiplier 

   1 0 0  1 i Partial Products 

  0 0 0 0  × ii 

 1 0 0 1 ×  × iii 

1 0 0 1 × ×  × iv 

1 1 1 0 1 0  1  Final Product=11101.01 

 

 1 0 1 1 

- 0 1 1 0 

 0 1 0 1 



2.7.4 Binary Divison 

Binary divison is similar to the decimal divison.  

Example25: Divide: (i) 100001 by 110 (ii) 101101 by 110 

 

2.7.5 1’s Complement Subtraction 

Rules for 1’s complement subtraction is listed as: 

(1) Write the given numbers in positive binary numbers. 

(2) 1’s complement the negative number. 

(3) Add the numbers. 

(4) If carry is generated; end around the carry. 

(5) If MSB=1 (carry generated or not); number is negative and in 1’s complementd form. 

(6) If MSB=0 (carry generated or not); number is positive. 

Example 26: Subtract 27.50 from 68.75 using the 12 bit 1’s complement arithmetic. 

+68.75 = 01000100.1100 

+27.50 = 00011011.1000 

To perform 1’s complement subtraction: 68.75 + (-27.50) 

So, Complement the negative number.-27.50 = 11100100.0111 and Perform addition 

 

 



 6 8 . 7 5  0 1 0 0 0 1 0 0 . 1 1 0 0 

- 2 7 . 5 0  1 1 1 0 0 1 0 0 . 0 1 1 1 

+ 4 1 . 2 5  carry1 0 0 1 0 1 0 0 1 . 0 0 1 0 

      End 

around 

carry 

           

+ 1 

      MSB=1, 

Number is 

positive 

0 0 1 0 1 0 0 1 . 0 1 0 0 

Example 27: Subtract 25 from 14 using the 8 bit 1’s complement arithmetic. 

 +14 = 00001110 

+25=  00011001 

Subtraction: 14+(-25) 

-25= 11100110 

0 0 0 0 1 1 1 0 

1 1 1 0 0 1 1 0 

1 1 1 1 0 1 0 0 

 

There is no carry, MSB=1, number is negative and in 1’s complemented form. (14-25 = -11) 

Complement the result and put negative sign to get the magnitude sign. 

2.7.6 Two’s Complement Subtraction 

Rules for 2’s complement subtraction is listed as: 

(1) Write the given numbers in positive binary numbers. 

(2) 2’s complement the negative number. 

(3) Add the numbers. 

(4) If carry is generated; discard the carry. 

(5) If MSB=1 (carry generated or not); number is negative and in 2’s complementd form. 

2’s complement the result to get the magnitude. 



(6) If MSB=0 (carry generated or not); number is positive.  

Example28: Subtract -75 from 26 using 8-bit 2’s complement method. 

+75 = 01001011 

-75 = 10110101   (by two’s complement) 

+26= 00011010 

Add :    00011010 

10110101 

11001111l 

There is no carry, MSB=1, result is negative and in two’s complement form. The magnitude 

is 2’s complemented, that is 00110001 =49, Result is -49.  

Example29: Subtract 45.75 from 87.5 using the 12 bit 2’s complement method.  

        Solution:  87.50 + (-45.75) 

        +87.50 = 01010111.1000 

          -45.75  = 11010010.0100 (in 2’s complemented form) 

100101001.1100 

There is a carry, ignore it. MSB=0, result is positive and in normal binary form. The result is 

41.75. 

2.8 Binary Codes 

- Coding is the process of altering the characteristics of information to make it more 
suitable for intended application 

- Coding schemes depend on Security requirements, Complexity of the medium of 
transmission, Levels of error tolerated, Need for standardization. 

- In binary coding each item of information is assigned a unique combination of 1’s 
and 0’s 

- Come commonly used binary codes are BCD and Gray codes. 
 

2.8.1 Classification of codes 

The codes are broadly categorized into following four categories. 



 Weighted Codes 

 Non-Weighted Codes 

 Alphanumeric Codes 

 Error Detecting and Correcting Codes 

 Reflective codes 

 Sequential codes 

 

Weighted Codes 

Weighted binary codes are those binary codes which obey the positional weight principle. 
Each position of the number represents a specific weight. Several systems of the codes are 
used to express the decimal digits 0 through 9. In these codes each decimal digit is 
represented by a group of four bits. 

 

Non-Weighted Codes 

In this type of binary codes, the positional weights are not assigned. The examples of non-
weighted codes are Excess-3 code and Gray code. 

Alphanumeric Codes 

The alphanumeric codes are the codes that represent numbers and alphabetic characters.The following 

three alphanumeric codes are very commonly used for the data representation. 

 American Standard Code for Information Interchange (ASCII). 

 Extended Binary Coded Decimal Interchange Code (EBCDIC). 

 Five- bit Baudot Code. 

ASCII code is a 7-bit code whereas EBCDIC is an 8-bit code. ASCII code is more 
commonly used worldwide while EBCDIC is used primarily in large IBM computers. 

Error Detection and Correction Code 

These codes are used to detect and correct the error bits in the received bit stream. Parity 
bits, hamming code are the examples of error detection and correction code. 

Reflective codes:  

A code is reflective when the code is self-complementing. In other words, when the code for 
9 is the complement the code for 0, 8 for 1, 7 for 2, 6 for 3 and 5 for 4.  

2421BCD, 5421BCD and Excess-3 code are reflective codes 



 Sequential codes:  

In sequential codes, each succeeding ‘code is one binary number greater than its preceding 
code. This property helps in manipulation of data. 

8421 BCD and Excess-3 are sequential codes. 

2.8.2  BCD (Binary Coded Decimal) Codes 

It is a weighted code the decimal value of a code is the algebraic sum of the weights of 1s 

appearing in the number. Let (A)10 be a decimal number encoded in the binary form as 

a3a2a1a0. Then 

(A)10 = w3a3 + w2a2 + w1a1 +w0a0 
 

where w3, w2, w1 and w0 are the weights selected for a given code, and a3, a2, a1 and a0 

are either 0s or 1s. The more popularly used codes have the weights as 

 
w3 w2 w1 w0 

8 4 2 1 

2 4 2 1 
8 4 -2 -1 

 
The decimal numbers in these three codes are 
 

Table 7: BCD codes 

Decimal 
digit 

Weights 
8 4 2 

 
1 

Weights 
2 4 2 1 

Weights 
8 4 -2 

 
-1 

0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 1 0 0 0 1 0 1 1 1 
2 0 0 1 0 0 0 1 0 0 1 1 0 
3 0 0 1 1 0 0 1 1 0 1 0 1 
4 0 1 0 0 0 1 0 0 0 1 0 0 
5 0 1 0 1 1 0 1 1 1 0 1 1 
6 0 1 1 0 1 1 0 0 1 0 1 0 
7 0 1 1 1 1 1 0 1 1 0 0 1 
8 1 0 0 0 1 1 1 0 1 0 0 0 
9 1 0 0 1 1 1 1 1 1 1 1 1 

 

In all the cases only ten combinations are utilized to represent the decimal digits. The 

remaining six combinations are illegal. However, they may be utilized for error 

detectionpurposes. 

Example30:Consider, for example, the representation of the decimal number 16.85 in 

Binary Coded Decimal code (BCD) with weights 8421. 



(16.85)10 = (00010110 . 10000101) 
 
                                    1         6        8      5 
Here, each decimal digit is represented by four binary bits.  

2.8.3 Gray Codes 

There are many applications in which it is desirable to have a code in which the adjacent 

codes differ only in one bit. Such codes are called Unit distance Codes. “Gray code” is the 

most popular example of unit distance code.The gray code is a cyclic code. Gray code 

cannot be used for arithmetic operation. The 3-bit and 4-bit gray codesare listed in Table 

Table 8: Gray codes 

Decimal 3-bit Gray 4-bit Gray 

0 000 0000 

1 001 0001 

2 011 0011 

3 010 0010 

4 110 0110 

5 111 0111 

6 101 0101 

7 100 0100 

8 - 1100 

9 - 1101 

10 - 1111 

11 - 1110 

12 - 1010 

13 - 1011 
14 - 1001 
15 - 1000 

 
Conversion of binary to gray code: 

1. Write the MSB of binary number as MSB of Gray code. 

2. To find the next bit of gray code, Exclusive OR the MSB of binary number with 

successive bit, result will be the next bit of gray code. 

3. Repeat the same process till the LSB is found. 

Example 31: Convert Binary 1001 into gray code 

Binary     1 ex-or 0 ex-or 0 ex-0r 1 

Gray        1           1          0           1 

Example Convert 1101011 into gray code 



Binary = 1101011 

Gray   = 1011110 

Conversion of gray to binary: 

1. Write the MSB of gray number as MSB of binary number. 

2. To find the next bit of binary, Exclusive OR the left side bit of binary number with 

successive gray bit, result will be the next bit of binary number. 

3. Repeat the same process till the LSB is found. 

Example 32: Convert 1011 into binary number 

Gray =   1  0  1  1  

                  Ex-or 

Binary = 1 1 0 1 0 

2.8.4 Excess-3 code 

The Excess-3 code is also called as XS-3 code. It is non-weighted code used to express 
decimal numbers. The Excess-3 code words are derived from the 8421 BCD code words 
adding (0011)2 or (3)10 to each code word in 8421. The excess-3 codes are obtained as 
follows − 

 

Table 9: Excess-3 codes 

 



Practice Questions 

 
Multiple Choice Questions 

 
1. Which number system is understood easily by thecomputer? 

 
(a) Binary (b)Decimal (c)Octal (d) Hexadecimal 

 
2. How many symbols are used in the decimal number system? (a) 

2 (b)8 (c)10 (d)16 

3. What does (10)16 represent in decimal number system? 

(a)10 (b) 0A (c) 16 (d) 15 

4. How many bits have to be grouped together to convert the binary number to its 

corresponding octalnumber? 

(a) 2 (b) 3 (c) 4 (d) 5 
 

5. Which bit represents the sign bit in a signed numbersystem? 

a. Left mostbit 

b. Right mostbit 

c. Left centre 

d. Rightcentre 
 

6. The ones complement of 1010is 

(a) 1100 (b)0101 (c)0111 (d) 1011 
 

7. How many bits are required to cover the numbers from +63 to -63 in one’s 

complementrepresentation? 

(a) 6 (b) 7 (c) 8 (d) 9 

 

Problems 

1. Perform the following number systemconversions: 
 

(a) 101101112 = ?10 (b) 567410 = ?2 

(c) 100111002 = ?8 (d) 24538 = ?2 

(e) 1111000102 = ?16 (f) 6893410 = ?2 

(g) 10101.0012 = ?10 (h) 6FAB716 = 



?10 

(i) 11101.1012 = ?8 (j) 5623816 = ?2 

2. Convert the following hexadecimal numbers into binary and octalnumbers 

(a) 78AD (b)DA643 (c)EDC8 

(d)3245 (e)68912 (f)AF4D 

3. Convert the following octal numbers into binary and hexadecimalnumbers 
 

(a) 7643 (b) 2643 (c) 1034 
(d) 3245 (e) 6712 (f) 7512 

4. Convert the following numbers intobinary: 
 

(a) 123610 (b) 234910 (c) 345.27510 

(d) 45678 (e) 45.658 (f) 145.238 
(g) ADF516 (h) AD.F316 (i) 12.DA16 

5. Whatistherangeofunsigneddecimalvaluesthatcanberepresentedby8bits? 

6. Whatistherangeofsigneddecimalvaluesthatcanberepresentedby8bits? 

7. Howmanybitsarerequiredtorepresentdecimalvaluesrangingfrom75to-75? 

8. Represent each of the following values as a 6-bit signed binary number in one’s 
complement and two’s complementforms. 

(a)28 (b)-21 (c)-5 (d)-13 

9. Determine the decimal equivalent of two’s complement numbers given below:  

 (a) 1010101 (b)0111011 (c) 11100010 

10. Solve each of the following 5-bit subtraction problems using 1's complement 

representation.    

a. 001102 – 001012 
b. 011002 - 010102 
c. 001002 - 001012 
d. 010012 - 010112 
e. 000112 - 011002 
f. 001102 - 010012 

11. For each of the following problems convert the subtrahend to an 8-bit 2's complement 
representation and subtract. Leave your answer in binary.    

(a) 011111112 - 7810 
(b) 001100102 - 12310 
(c) 010010012 - 11110 
(d) 000001112 - 3510 

 

 



CHAPTER 3 

3.1 Introduction to basic Logic Gate 

A logic gate is an elementary building block of a digital circuit. Most logic gates have two 

inputs and one output and at any given moment, every terminal is in one of the two binary 

conditions either low (0) or high (1), represented by different voltage levels. The logic state 

of a terminal change often, as the circuit processes data. In most logic gates, the low state is 

approximately zero volts (0 V), while the high state is approximately five volts positive (+5 

V). There are seven basic logic gates: AND, OR, XOR, NOT, NAND, NOR, and NOR. 

3.1.2  The AND Gate 

The AND gate is so named because, if 0 is called "false" and 1 is called "true," the gate acts 

in the same way as the logical "and" operator. The following illustration and table show the 

circuit symbol and logic combinations for an AND gate. (In the symbol, the input terminals 

are at left and the output terminal is at right.) The output is "true" when both inputs are "true." 

Otherwise, the output is "false." 

 

AND gate 

 

 

 

3.1.2 The OR Gate   

The OR gate gets its name from the fact that it behaves after the fashion of the logical 

inclusive "or." The output is "true" if either or both of the inputs are "true." If both inputs are 

"false," then the output is "false." 

OR gate 

 

Input 1 Input 2 Output 

0 0 0 

0 1 0 

1 0 0 

1 1 1 



 

 

 

 

 

 3.1.3 The XOR Gate   

The XOR (Exclusive-OR) gate acts in the same way as the logical "either/or." The output is 

"true" if either, but not both, of the inputs are "true." The output is "false" if both inputs are 

"false" or if both inputs are "true." Another way of looking at this circuit is to observe that the 

output is 1 if the inputs are different, but 0 if the inputs are the same. 

 

 XOR gate 

 

 

 3.1.4 The NOT Gate   

A logical inverter, sometimes called a NOT gate to differentiate it from other types of 

electronic inverter devices, has only one input. It reverses the logic state. 

 

Inverter or NOT gate 

   

3.1.5 The NAND Gate   

The NAND gate operates as an AND gate followed by a NOT gate. It acts in the manner of 

the logical operation "and" followed by negation. The output is "false" if both inputs are 

"true." Otherwise, the output is "true." 

Input 1 Input 2 Output 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

Input 1 Input 2 Output 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

Input Output 

1 0 

0 1 



 

NAND gate 

 

 

 3.1.6 The NOR Gate   

The NOR gate is a combination OR gate followed by an inverter. Its output is "true" if both 

inputs are "false." Otherwise, the output is "false." 

 

NOR gate 

 

 

 3.1.7 The XNOR Gate   

The XNOR (exclusive-NOR) gate is a combination XOR gate followed by an inverter. Its 

output is "true" if the inputs are the same and “false" if the inputs are different. 

 

XNOR gate 

 

 

Using combinations of logic gates, complex operations can be performed. In theory, there is 

no limit to the number of gates that can be arrayed together in a single device. But in practice, 

Input 1 Input 2 Output 

0 0 1 

0 1 1 

1 0 1 

1 1 0 

Input 1 Input 2 Output 

0 0 1 

0 1 0 

1 0 0 

1 1 0 

Input 1 Input 2 Output 

0 0 1 

0 1 0 

1 0 0 

1 1 1 



there is a limit to the number of gates that can be packed into a given physical space. Arrays 

of logic gates are found in digital integrated circuits (ICs). As IC technology advances, the 

required physical volume for each individual logic gate decreases and digital devices of the 

same or smaller size become capable of performing ever-more-complicated operations at 

ever-increasing speeds. 

3.2 Universal Gate 

A universal gate is a gate which can implement any Boolean function without need to use any 

other gate type. The NAND and NOR gates are universal gates. In practice, this is 

advantageous since NAND and NOR gates are economical and easier to fabricate and are the 

basic gates used in all IC digital logic families. In fact, an AND gate is typically implemented 

as a NAND gate followed by an inverter not the other way around!! Likewise, an OR gate is 

typically implemented as a NOR gate followed by an inverter not the other way around!!  

NAND Gate as a Universal Gate: 

To prove that any Boolean function can be implemented using only NAND gates, lets draw 

AND, OR, and NOT operations using only these gates. 

Implementing an Inverter Using only NAND Gate:  

The figure shows two ways in which a NAND gate can be used as an inverter (NOT gate). 

 1. All NAND input pins connect to the input signal A gives an output A’.  

 

2. One NAND input pin is connected to the input signal A while all other input pins are 

connected to logic 1. The output will be A’. 

 



Implementing AND Using only NAND Gates 

An AND gate can be replaced by NAND gates as shown in the figure (The AND is replaced 

by a NAND gate with its output complemented by a NAND gate inverter).  

 

Implementing OR Using only NAND Gates  

An OR gate can be replaced by NAND gates as shown in the figure (The OR gate is replaced 

by a NAND gate with all its inputs complemented by NAND gate inverters.)

 

Thus, the NAND is a universal gate since it can be implemented the AND, OR and NOT 

functions. 

NOR Gate is a Universal Gate:  

To prove that any Boolean function can be implemented using only NOR gates, lets show 

that the AND, OR, and NOT operations can be performed using only these gates.  

Implementing an Inverter Using only NOR Gate  

The figure shows two ways in which a NOR gate can be used as an inverter (NOT gate).  

1. All NOR input pins connect to the input signal A gives an output A’.  

 



2. One NOR input pin is connected to the input signal A while all other input pins are 

connected to logic 0. The output will be A’.  

 

Implementing OR Using only NOR Gates  

An OR gate can be replaced by NOR gates as shown in the figure (The OR is replaced by a 

NOR gate with its output complemented by a NOR gate inverter)  

 

Implementing AND Using only NOR Gates  

An AND gate can be replaced by NOR gates as shown in the figure (The AND gate is 

replaced by a NOR gate with all its inputs complemented by NOR gate inverters)  

 

Thus, the NOR gate is a universal gate since it can implement the AND, OR and NOT 

functions. 

3.3 Equivalent Gates: 

The shown figure summarizes important cases of gate equivalence. Note that bubbles indicate 

a complement operation (inverter).  

A NAND gate is equivalent to an inverted-input OR gate.  



 

An AND gate is equivalent to an inverted-input NOR gate.  

 

A NOR gate is equivalent to an inverted-input AND gate.  

 

An OR gate is equivalent to an inverted-input NAND gate.  

 

Two NOT gates in series are same as a buffer because they cancel each other as A’’ = 

 

3.4 Boolean Algebra 

The most obvious way to simplify Boolean expressions is to manipulate them in the same 

way as normal algebraic expressions are manipulated. With regards to logic relations in 

digital forms, a set of rules for symbolic manipulation is needed in order to solve for the 

unknowns. 

A set of rules formulated by the English mathematician George Boole describe certain 

propositions whose outcome would be either true or false. With regard to digital logic, these 

rules are used to describe circuits whose state can be either, 1 (true) or 0 (false). In order to 



fully understand this, the relation between the AND gate, OR gate and NOT gate operations 

should be appreciated. A number of rules can be derived as:  

 X = 0 or X = 1 

 0 . 0 = 0 

 1 + 1 = 1 

 0 + 0 = 0 

 1 . 1 = 1 

 1 . 0 = 0 . 1 = 0 

 1 + 0 = 0 + 1 = 1 

3.4.1 Laws of Boolean Algebra 

Table 2 shows the basic Boolean laws. Note that every law has two expressions, (a) and (b). 

This is known as duality. These are obtained by changing every AND(.) to OR(+), every 

OR(+) to AND(.) and all 1's to 0's and vice-versa.  

It has become conventional to drop the . (AND symbol) i.e. A.B is written as AB.  

1 : Commutative Law  

(a) A + B = B + A 

(b) A B = B A  

2 : Associate Law  

(a) (A + B) + C = A + (B + C)  

(b) (A B) C = A (B C)  

3 : Distributive Law  

(a) A (B + C) = A B + A C 

(b) A + (B C) = (A + B) (A + C)  

4 : Identity Law  

(a) A + A = A  

(b) A A = A  

5 :   

(a)  

(b)  

6 : Redundancy Law  



(a) A + A B = A  

(b) A (A + B) = A  

7 :  

(a) 0 + A = A  

(b) 0 A = 0  

8 :  

(a) 1 + A = 1  

(b) 1 A = A  

9:  

(a)  

(b)  

10:  

(a)  

(b)  

11: De Morgan's Theorem  

(a)  

(b)  

Table 2: Boolean Laws  

Examples 

Prove 10: (a)  

(1)Algebraically:  

 

(2) Using the truth table: 

 



Using the laws given above, complicated expressions can be simplified. 

 

 

 

 

3.5 CANONICAL FORM 

A Boolean function can be represented in one of the following methods: 

 Truth Table 

 Logic Circuit 

 SOP expression 

 POS expression 

SOP (Sum of product expression):  It is the sum of all product term of each input 
combination for which the output is high (logic ‘1’). Each product term of SOP expression is 
known as minterm. Minterms are ORed to get the Boolean expression.For a given truth table, 
minterm and SOP expression can be written as 

2-variable Truth Table: 

Index xy Minterm F Symbol 

0 00 x’ y’ 1 m0 

1 01 x ‘y 1 m1 

2 10 x y’ 1 m2 

3 11 x y 1 m3 

 

3.5.1 SOP representation: 

F (x, y) = ∑ (m0, m1, m2, m3) -----------------------------minterm presentation  

F (x, y) = x’ y’ + x ‘y + x y’+ x y ----------------------SOP presentation 

 

3-variable Truth Table: 



X Y Z Term F Symbol 

0 0 0 x’y’z’ 1 m0 

0 0 1 x’y’z 1 m1 

0 1 0 x’yz’ 1 m2 

0 1 1 x’yz 1 m3 

1 0 0 xy’z’ 1 m4 

1 0 1 xy’z 1 m5 

1 1 0 xyz’ 1 m6 

1 1 1 xyz 1 m7 

 

SOP representation: 

F (x, y, z) = ∑ (m0, m1, m2, m3, m4, m5, m6, m7)  

F (x, y, z) = x’y’z’+ x’y’z +-x’yz’+ x’yz+ xy’z’+ xy’z + xyz’+xyz 

Example1. Represent the given truth table in SOP form 

X Y Z F 

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 1 1 0 

1 0 0 0 

1 0 1 1 

1 1 0 0 

1 1 1 1 

 

F = AB’C+ABC  

F (x, y, z) = ∑ (m5, m7) 



3.5.2 Product of Sum expression(POS): It is the product of all sum term of each input 
combination for which the output is low (logic ‘0’). Each sum term of POS expression is 
known as maxterm (M). Maxterms are ANDed to get the Boolean expression. For a given 
truth table, maxterm and POS expression can be written as 

3-variable Truth Table: 

X Y Z Term F Symbol 

0 0 0 X+Y+Z 0 M0 

0 0 1 X+Y+Z’ 0 M1 

0 1 0 X+Y’+Z 0 M2 

0 1 1 X+Y’+Z’ 0 M3 

1 0 0 X’+Y+Z 0 M4 

1 0 1 X’+Y+Z’ 0 M5 

1 1 0 X’+Y’+Z 0 M6 

1 1 1 X’+Y’+Z’ 0 M7 

 

POS representation: 

F (X,Y,Z) = (X+Y+Z) (X+Y+Z’) (X+Y’+Z) 
(X+Y’+Z’)(X’+Y+Z)(X’+Y+Z’)(X’+Y’+Z)(X’+Y’+Z’) -------- POS Form 

F (X,Y,Z) = π(M0.M1.M2.M3.M4.m5.M6.M7)       -------Maxterms 

 

Example2. Represent the given truth table in POS form 

X Y Z F 

0 0 0 1 

0 0 1 0 

0 1 0 1 

0 1 1 1 

1 0 0 0 

1 0 1 1 



1 1 0 0 

1 1 1 1 

 

F (X, Y, Z) = π (M1.M4.M6) 

F (X, Y, Z) = (X+Y+Z’) (X’+Y+Z) (X’+Y’+Z) 

Types of SOP and POS form: Canonical and Standard 

Standard form: In standard form It is not necessary for each product term (SOP) and sum 
term (POS) to contain all literals. Therefore, the product terms and sum terms may or may not 
be the min terms and max terms respectively. Standard form is the reduced Boolean 
expression. 

Standard SOP expression: 

F (A, B, C) = A’B+B’C 

The given function has three literals, in first term literal C is missing. Similarly, in second 
term literal A is missing. 

Standard POS expression: 

F (A, B, C) = (A’ +C). (B’+C) 

The given function has three literals, in first term literal B is missing. Similarly, in second 
term literal A is missing. 

Canonical form: In this form both the product and sum terms contain all literals. Canonical 
expressions are simplified into standard form. There can be situations where that it is 
impossible to simplify the canonical form. Then the canonical and standard forms are similar. 

Canonical SOP expression: 

F (A, B, C) = A’BC+AB’C 

The given function has three literals, both the product terms contain all three literals. 

Canonical POS expression: 

F (A, B, C) = (A’ +B+C). (A’+B’+C) 

The given function has three literals, both the sum terms contain all three literals. 

Standard forms can be converted into canonical form. 

Conversion of SOP into canonical form: 



The normal SOP form function can be converted to canonical SOP form by using the 
Boolean algebraic law, (A + A’ = 1) and by following the below steps. 

Step 1: Multiply the non-standard product term with the sum of its missing variable and its 
complement, which results in 2 product terms 

Step 2: Repeat the step 1, until all resulting product terms contain all variables 

Step3: Discard the duplicate term (if exist). 

By these two steps we can convert the SOP function into canonical SOP function. In this 
process, for each missing variable in the function, the number of product terms will double. 

Example 3: Convert into canonical SOP function F = x y + x z + y z 

Sol: F = x y + x z + y z 

= x y (z + z’) + x (y + y’) z + (x + x’) y z        

= x y z + x y z’ + x y z + x y’ z + x y z + x’ y z 

= x y z + x y z’ + x y’ z + x’ y z 

The canonical SOP form is F = x y z + x y z’ + x y’ z + x’ y z 

Example4: Convert into canonical SOP form 

E (X, Y, Z) = Y’ + X’Z’ 

= Y’(X+X’) (Z+Z’) + X’Z’(Y+Y’) 

= (XY’+X’Y’) (Z+Z’) + X’YZ’+ X’Y’Z’ 

= XY’Z+X’Y’Z+XY’Z’+X’Y’Z’+ X’YZ’+X’Y’Z’ 

     = = XY’Z+X’Y’Z+XY’Z’+X’Y’Z’+ X’YZ’ 

Conversion of POS form Canonical POS form 

We can include all the variables in each product term of the POS form equation, which 
doesn’t have all the variables by converting into standard POS form. The normal POS form 
function can be converted to standard POS form by using the Boolean algebraic law, (A . A’ 
= 0) and by following the below steps. 

Step 1: Add each non-standard sum term to the product of its missing variable and its 
complement, which results in 2 sum terms. 

Step 2: Applying Boolean algebraic law, A + BC = (A + B) (A + C)  

Step 3: By repeating the step 1, until all resulting sum terms contain all variables. 

Step4: Discard the duplicate sum terms (if exists) 



By these steps we can convert the POS function into standard POS function. 

Example5: Convert into canonical POS form 

F = (A’ + B + C) (B’ + C + D’) (A + B’ + C’ + D) 

Solution: 

In the first term, the variable D or D’ is missing, so we add D.D’ = 1 to it. Then 

(A’ + B + C + D.D’) = (A’ + B + C + D). (A’ + B + C + D’) 

Similarly, in the second term, the variable A or A’ is missing, so we add A*A’ = 1 to it. Then 

(B’ + C + D’ + A*A’) = (A + B’ + C + D’) * (A’ + B’ + C + D’) 

The third term is already in the standard form, as it has all the variables. Now the standard 
POS form equation of the function is 

F = (A’ + B + C + D) (A’ + B + C + D’) (A + B’ + C + D’) (A’ + B’ + C + D’) (A + B’ + C’ 
+ D) 

Conversion of SOP form to POS form 

To convert the SOP form into POS form, first we should change the Σ to Π and then write the 
numeric indexes of missing variables of the given Boolean function. 

Example6:The given SOP function is 

F (A, B, C) = ∑ m (0, 2, 3, 5, 7) = A’ B’ C’ + A B’ C’ + A B’ C + ABC’ + ABC   

is written in POS form by following these steps. 

Step 1: changing the operational sign ∑ to Π 

Step 2: writing the missing indexes of the terms, 001 (1), 100 (4) and 110 (6). Now write the 
sum form for these noted terms. 

001 = (A + B + C) 100 = (A + B’ + C’) 110 = (A + B’ + C’) 

Writing down the new equation in the form of POS form, 

F (A, B, C) = ΠM (1, 4, 6) = (A + B + C) (A + B’ + C’)(A + B’ + C’) 

Conversion of POS form to SOP form 

To convert the POS form into SOP form, first we should change the Π to Σ and then write the 
numeric indexes of missing variables of the given Boolean function. 

Example7: The POS function F (A, B, C) = ΠM (2, 3, 5) = A B’ C’ + A B’ C + ABC’ is 
written in SOP form by 



Step 1: changing the operational sign to Σ 

Step 2: writing the missing indexes of the terms, 000 (0), 001 (1), 100 (4), 110 (6), and 111 
(7). Now write the product form for these noted terms. 

000 = A’ B’ C’ 001 = A’ B’C 100 = A B’C’ 

110 = A B C’ 111 = A B C 

Writing down the new equation in the form of SOP form, 

F = Σ A, B, C (0, 1, 4, 6, 7) = (A’ B’ C’) + (A’ B’ C) + (A B’ C’) + (A BC’) + (A B C) 

Example8: Express the Boolean function F = XY + X´Z in a product of maxterm form. 

Solution:  

First, convert the function (Product terms) into OR (Sum) terms using the distributive law: 

F = XY + X´Z = (XY + X’) (XY + Z) 

= (X + X’) (Y + X’) (X + Z) (Y + Z)  

= (X’+Y) (X+Z) (Y+Z) 

The function has three variables: X, Y and Z. Each OR term is missing one variable; 
therefore 

Term1: (X’+ Y + Z. Z’) = (X’+ Y + Z) (X’+ Y + Z’) 

Term2: (X+ Y.Y’ + Z) = (X+ Y + Z) (X+ Y’ + Z) 

Term3: (XX’+ Y + Z) = (X’+ Y + Z) (X+ Y + Z) 

Combining all the terms and removing those that appear more than once 

F = (X+Y+Z)(X+Y’+Z)(X’+Y+Z)(X’+Y+Z) = M0M2M4M5 = ΠM (0,2,4,5) 

3.6 K-Map 

Karnaugh maps (K-maps) are graphical method for the simplification of Boolean 
functions. K- Maps consist of cells. 

Where no. of cells =2n   as n being no. of input variables 

K-map cells are arranged so that adjacent cells differ in only one bit position (based on Gray 
code). 

Karnaugh Map Advantages 

1. Minimization can be done more systematically 
2. Much simpler to find minimum solutions 



3. Easier to see what is happening (graphical) 
4. Almost always used instead of Boolean minimization. 

2-Variable K-Map 

The number of cells in 2 variables K-map is four, since the number of variables is two. The 
following figure shows 2 variables K-Map. 

 

There is only one possibility of grouping 4 adjacent min terms. 

The possible combinations of grouping 2 adjacent min terms are {(m0, m1), (m2, m3), (m0, 
m2) and (m1, m3)}. 

3-Variable K-Map 

The number of cells in 3 variable K-map is eight, since the number of variables is three. The 
following figure shows 3 variable K-Map. 

 

 

There is only one possibility of grouping 8 adjacent min terms. 

The possible combinations of grouping 4 adjacent min terms are {(m0, m1, m3, m2), (m4, 
m5, m7, m6), (m0, m1, m4, m5), (m1, m3, m5, m7), (m3, m2, m7, m6) and (m2, m0, m6, 
m4)}. 

The possible combinations of grouping 2 adjacent min terms are {(m0, m1), (m1, m3), (m3, 
m2), (m2, m0), (m4, m5), (m5, m7), (m7, m6), (m6, m4), (m0, m4), (m1, m5), (m3, m7) and 
(m2, m6)}. 

If x=0, then 3 variable K-map becomes 2 variable K-map. 

Four Variable K-Map 



The number of cells in 4 variables K-map is sixteen, since the number of variables is four. 
The following figure shows 4 variables K-Map. 

 

There is only one possibility of grouping 16 adjacent min terms. 

Let R1, R2, R3 and R4 represents the min terms of first row, second row, third row and 
fourth row respectively. Similarly, C1, C2, C3 and C4 represents the min terms of first 
column, second column, third column and fourth column respectively. The possible 
combinations of grouping 8 adjacent min terms are {(R1, R2), (R2, R3), (R3, R4), (R4, R1), 
(C1, C2), (C2, C3), (C3, C4), (C4, C1)}. 

If w=0, then 4 variable K-map becomes 3 variable K-map. 

Five Variable K-Map 

The number of cells in 5 variable K-map is thirty-two, since the number of variables is 5. The 
following figure shows 5 variable K-Map. 

 

There is only one possibility of grouping 32 adjacent min terms. 

There are two possibilities of grouping 16 adjacent min terms. i.e., grouping of min terms 
from m0 to m15 and m16 to m31. 



If v=0, then 5 variable K-map becomes 4 variable K-map. 

In the above all K-maps, we used exclusively the min terms notation. Similarly, you can use 
exclusively the Max terms notation. 

Minimization of Boolean Functions using K-Maps 

If we consider the combination of inputs for which the Boolean function is ‘1’, then we will 
get the Boolean function, which is in standard sum of products form after simplifying the K-
map. 

Similarly, if we consider the combination of inputs for which the Boolean function is ‘0’, 
then we will get the Boolean function, which is in standard product of sums form after 
simplifying the K-map. 

Rules for simplifying K-maps in order to get standard sum of product form. 

1. Select the respective K-map based on the number of variables present in the Boolean 
function. 

2. If the Boolean function is given as sum of min terms form, then place the ones at 
respective min term cells in the K-map. If the Boolean function is given as sum of 
products form, then place the ones in all possible cells of K-map for which the given 
product terms are valid. 

3. Check for the possibilities of grouping maximum number of adjacent ones. It should 
be powers of two. Start from highest power of two and upto least power of two. 
Highest power is equal to the number of variables considered in K-map and least 
power is zero. 

4. Each grouping will give either a literal or one product term. It is known as prime 
implicant. The prime implicant is said to be essential prime implicant, if at least single 
‘1’ is not covered with any other groupings but only that grouping covers. 

5. Note down all the prime implicants and essential prime implicants. The simplified 
Boolean function contains all essential prime implicants and only the required prime 
implicants. 

6. If outputs are not defined for some combination of inputs, then those output values 
will be represented with don’t care symbol ‘x’. That means, we can consider them as 
either ‘0’ or ‘1’. 

7. If don’t care terms also present, then place don’t care ‘x’ in the respective cells of K-
map. Consider only the don’t cares ‘x’ that are helpful for grouping maximum number 
of adjacent ones. In those cases, treat the don’t care value as ‘1’. 

Example 9: simplify the following Boolean function, f= WX’Y’ + WY + W’YZ’ using K-
map. 

The given Boolean function is in sum of products form. It is having 4 variables W, X, Y & Z. 
So, we require 4 variable K-map. The 4 variable K-map with ones corresponding to the given 
product terms is shown in the following figure. 



 

Here, 1s are placed in the following cells of K-map. 

The cells, which are common to the intersection of Row 4 and columns 1 & 2 are 
corresponding to the product term, WX’Y’. 

The cells, which are common to the intersection of Rows 3 & 4 and columns 3 & 4 are 
corresponding to the product term, WY. 

The cells, which are common to the intersection of Rows 1 & 2 and column 4 are 
corresponding to the product term, W’YZ’. 

There are no possibilities of grouping either 16 adjacent ones or 8 adjacent ones. There are 
three possibilities of grouping 4 adjacent ones. After these three groupings, there is no single 
one left as ungrouped. So, we no need to check for grouping of 2 adjacent ones. The 4 
variable K-map with these three groupings is shown in the following figure. 

 

Here, we got three prime implicants WX’, WY & YZ’. All these prime implicants 
are essential because of following reasons. 

Two ones (m8 & m9) of fourth row grouping are not covered by any other groupings. Only 
fourth row grouping covers those two ones. 

Single one (m15) of square shape grouping is not covered by any other groupings. Only the 
square shape grouping covers that one. 

Two ones (m2 & m6) of fourth column grouping are not covered by any other groupings. 
Only fourth column grouping covers those two ones. 

Therefore, the simplified Boolean function is 

f = WX’ + WY + YZ’ 

Rules for simplifying K-maps in order to get standard product of sum form. 



1. Select the respective K-map based on the number of variables present in the Boolean 
function. 

2. If the Boolean function is given as product of Max terms form, then place the zeroes 
at respective Max term cells in the K-map. If the Boolean function is given as product 
of sums form, then place the zeroes in all possible cells of K-map for which the given 
sum terms are valid. 

3. Check for the possibilities of grouping maximum number of adjacent zeroes. It should 
be powers of two. Start from highest power of two and up to least power of two. 
Highest power is equal to the number of variables considered in K-map and least 
power is zero. 

4. Each grouping will give either a literal or one sum term. It is known as prime 
implicant. The prime implicant is said to be essential prime implicant, if at least single 
‘0’ is not covered with any other groupings but only that grouping covers. 

5. Note down all the prime implicants and essential prime implicants. The simplified 
Boolean function contains all essential prime implicants and only the required prime 
implicants. 

6. If don’t care terms also present, then place don’t care ‘x’ in the respective cells of K-
map. Consider only the don’t cares ‘x’ that are helpful for grouping maximum number 
of adjacent zeroes. In those cases, treat the don’t care value as ‘0’. 

 

Example10. Simplify the following Boolean function, f(X, Y,Z)=∏M(0,1,2,4) 

The given Boolean function is in product of Max terms form. It is having 3 variables X, Y & 
Z. So, we require 3 variable K-map. The given Max terms are M0, M1, M2 & M4. The 
3 variable K-map with zeroes corresponding to the given Max terms is shown in the 
following figure. 

 

There are no possibilities of grouping either 8 adjacent zeroes or 4 adjacent zeroes. There are 
three possibilities of grouping 2 adjacent zeroes. After these three groupings, there is no 
single zero left as ungrouped. The 3 variable K-map with these three groupings is shown in 
the following figure. 

 



Here, we got three prime implicants X + Y, Y + Z & Z + X. All these prime implicants 
are essential because one zero in each grouping is not covered by any other groupings except 
with their individual groupings. 

Example11: Minimize the following Boolean function
8, 9, 10, 13, 15) 

 Solution- 

F(A, B, C, D) 

= (A’B + AB)(C’D + CD) + (A’B’ + A’B + AB + AB’)C’D + (A’B’ + AB’)(C’D’ + CD’)

= BD + C’D + B’D’ 

 Example12: Minimize the following Boolean function
9, 11, 13, 15) 

 Now,F(A, B, C, D) 

= (A’B’ + A’B + AB + AB’)(C’D + CD) + (A’B’ + AB’)(C’D’ + C’D)

= D + B’C’ 

Thus, minimized Boolean expression is

Example13: Minimize the following Boolean function
11, 13, 15) + Σd(0, 2, 14) 

 Solution-  

Here, we got three prime implicants X + Y, Y + Z & Z + X. All these prime implicants 
because one zero in each grouping is not covered by any other groupings except 

 

Example11: Minimize the following Boolean function-F (A, B, C, D) = Σ m (0, 1, 2, 5, 7, 

 

= (A’B + AB)(C’D + CD) + (A’B’ + A’B + AB + AB’)C’D + (A’B’ + AB’)(C’D’ + CD’)

Minimize the following Boolean function-F(A, B, C, D) = Σm(0, 1, 3, 5, 7, 8, 

 

= (A’B’ + A’B + AB + AB’)(C’D + CD) + (A’B’ + AB’)(C’D’ + C’D) 

Thus, minimized Boolean expression is-F(A, B, C, D) = B’C’ + D 

Example13: Minimize the following Boolean function-F(A, B, C, D) = Σm(1, 3, 4, 6, 8, 9, 

Here, we got three prime implicants X + Y, Y + Z & Z + X. All these prime implicants 
because one zero in each grouping is not covered by any other groupings except 

F (A, B, C, D) = Σ m (0, 1, 2, 5, 7, 

= (A’B + AB)(C’D + CD) + (A’B’ + A’B + AB + AB’)C’D + (A’B’ + AB’)(C’D’ + CD’) 

F(A, B, C, D) = Σm(0, 1, 3, 5, 7, 8, 

F(A, B, C, D) = Σm(1, 3, 4, 6, 8, 9, 



 Now,F(A, B, C, D) 

= (AB + AB’)(C’D + CD) + (A’B’ + AB’)(C’D + CD) + (A’B’ + AB’)(C’D’ + C’D) + (A’B’ 
+ A’B)(C’D’ + CD’) 

= AD + B’D + B’C’ + A’D’ 

 Example14: Minimize the given 

Solution- 

 Now,F(A, B, C)= A'(B’C’ + B’C) + A(BC + BC’)

= A’B’ + AB 

NOTE- It may be noted that there is no need of considering the quad group.This 
even if we consider that group, we will have to consider the other two duets.

Example15: Minimize the given

Solution- 

 

= (AB + AB’)(C’D + CD) + (A’B’ + AB’)(C’D + CD) + (A’B’ + AB’)(C’D’ + C’D) + (A’B’ 

given Boolean function-F(A, B, C) = Σm(0, 1, 6, 7) + Σd(3, 5)

 

Now,F(A, B, C)= A'(B’C’ + B’C) + A(BC + BC’) 

It may be noted that there is no need of considering the quad group.This 
even if we consider that group, we will have to consider the other two duets. 

given function-F(A, B, C) = Σm(1, 2, 5, 7) + Σd(0, 4, 6)

= (AB + AB’)(C’D + CD) + (A’B’ + AB’)(C’D + CD) + (A’B’ + AB’)(C’D’ + C’D) + (A’B’ 

F(A, B, C) = Σm(0, 1, 6, 7) + Σd(3, 5) 

It may be noted that there is no need of considering the quad group.This is because 

F(A, B, C) = Σm(1, 2, 5, 7) + Σd(0, 4, 6) 



 Now,F(A, B, C)= (A + A’)(B’C’ + B’C) + A(B’C’ + B’C + BC + BC’) + (A + A’
BC’) 

= B’ + A + C’ 

 Example16: Minimize the Boolean function

 Solution- 

 Now,F(A, B, C)= (A + A’)(B’C’ + B’C) + A(B’C’ + B’C + BC + BC’)

= B’ + A 

Example17: Minimize the following Boolean function
+ Σd(5, 15) 

 Solution- 

 Now,F(A, B, C, D)= (AB + AB’)CD’ + (A’B’ + AB’)(C’D’ + CD’)

= ACD’ + B’D’ 

 

Now,F(A, B, C)= (A + A’)(B’C’ + B’C) + A(B’C’ + B’C + BC + BC’) + (A + A’

: Minimize the Boolean function-F(A, B, C) = Σm(0, 1, 6, 7) + Σd(3, 4, 5)

 

Now,F(A, B, C)= (A + A’)(B’C’ + B’C) + A(B’C’ + B’C + BC + BC’) 

Example17: Minimize the following Boolean function-F(A, B, C, D) = Σm(0, 2, 8, 10, 14) 

 

Now,F(A, B, C, D)= (AB + AB’)CD’ + (A’B’ + AB’)(C’D’ + CD’) 

 

Now,F(A, B, C)= (A + A’)(B’C’ + B’C) + A(B’C’ + B’C + BC + BC’) + (A + A’)(B’C’ + 

F(A, B, C) = Σm(0, 1, 6, 7) + Σd(3, 4, 5) 

, C, D) = Σm(0, 2, 8, 10, 14) 



Example18: Minimize the function

Solution- 

 Now, 

F(A, B, C, D)= A’B(C’D’ + C’D) + (A’B’ + A’B)(CD) + (AB + AB’)(C’D) + AB(CD + 
CD’) 

= A’BC’ + A’CD + AC’D + ABC

It is important to note that we are not considering the quad group because we have to 
consider the duets anyhow. 

 Example19 :F(W, X, Y, Z) = Σm(1, 3, 4, 6, 9, 11, 12, 14)
________ number of variables. Fill in the blank.

 Solution- 

  

F (W, X, Y, Z)= (W’X + WX) (Y’Z’ + YZ’) + (W’X’ + WX’) (Y’Z + YZ)

= XZ’ + X’Z 

= X ⊕ Z 

Minimize the function-F(A, B, C, D) = Σm(3, 4, 5, 7, 9, 13, 14, 15)

 

C’D) + (A’B’ + A’B)(CD) + (AB + AB’)(C’D) + AB(CD + 

= A’BC’ + A’CD + AC’D + ABC 

It is important to note that we are not considering the quad group because we have to 

:F(W, X, Y, Z) = Σm(1, 3, 4, 6, 9, 11, 12, 14). This function is independent 
________ number of variables. Fill in the blank. 

 

F (W, X, Y, Z)= (W’X + WX) (Y’Z’ + YZ’) + (W’X’ + WX’) (Y’Z + YZ) 

F(A, B, C, D) = Σm(3, 4, 5, 7, 9, 13, 14, 15) 

C’D) + (A’B’ + A’B)(CD) + (AB + AB’)(C’D) + AB(CD + 

It is important to note that we are not considering the quad group because we have to 

This function is independent 



Thus, minimized Boolean expression is- 

F(W, X, Y, Z) = X ⊕ Z 

Clearly, the given Boolean function depends on only two variables X and Z. 

Hence, it is independent of other two variables W and Y. 

 

Question 

1 Determine the values of A, B, C, and D that make the sum term equal 

to zero. 

2 Derive the Boolean expression for the logic circuit shown below 

 

3 For the SOP expression , how many 1s are in the truth table's output 

column? 

4 How many gates would be required to implement the following Boolean expression 

before simplification? XY + X(X + Z) + Y(X + Z) 

5 Determine the values of A, B, C, and D that make the product term equal to 1. 

6 What is the primary motivation for using Boolean algebra to simplify logic 

expressions? 

7 How many gates would be required to implement the following Boolean expression 

after simplification? XY + X(X + Z) + Y(X + Z) 

8 Consider the following Boolean function- 

F(W, X, Y, Z) = Σm(1, 3, 4, 6, 9, 11, 12, 14) 

This function is independent ________ number of variables. Fill in the blank. 

9 Use Karnaugh maps to find the minimum-cost SOP and POS expressions for the 

function f(x1,...,x4) = x1x3x4 + x3x4 + x1x2x4 + x1x2x3x4 assuming that there are also 

don’t-cares defined as D = d(9, 12, 14). 

10 F(A,B,C,D)=π(3,5,7,8,10,11,12,13) 



11 F(A,B,C)=π(0,3,6,7) 

12 Simplify the given 3-variable Boolean equation by using k-map. 

F = X’ Y Z + X’ Y’ Z + X Y Z’ + X’ Y’ Z’ + X Y Z + X Y’ Z’ 

13. Simplify the given 4-variable Boolean equation by using k-map. F (W, X, Y, Z) = (1, 5, 
12, 13) 

 

 


