POYNTING VECTOR
&
EQUATIONS




Poynting vector:

Poynting Vector ‘S’ is defined as the cross product
of the vectors E & H.

The direction of power flow at any point is
normal to both E & H vectors.
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Electromagnetic energy is transported down the waveguide
with the group velocity



Normal Incidence Plane Wave Reflection and Transmissions at Plane
Boundary Between Two Conductive Media
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immpedance i region 1. () direction of propagating wave
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The wave impedance as defined in chapter 2 as the ratio between the electric and magnetic fields
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Poynting Theorem from Maxwell’s Equations:

Maxwell’s equation in the point form is

oD
Equation (1) vxH=] +W

Taking dot product with ‘E’ on both sides
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From vector identity,
V- (ExH)=H-(VxE)—E(Vx H)

Equation (2)

E-(VxH)=H:-(VXE)-V-(EXH)



Substituting equation (2) in (1)
Equation (3) is
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From Maxwell’s Equation (V X E) = —E
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Equation (4)
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Integrating throughout the volume
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Total Power Power Rate of energy stored
dissipation

Using divergence theorem

f D.ds=f V--Ddv
S vol

f v-(ExH)dv=f (E X H) -dS
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Power flow in a co-axial cable

Consider a co-axial cable which has a dc
voltage V' between the conductors and a
steady current | flowing in the inner and outer
conductors.

The radius of inner and outer conductor
are ‘a’ and ‘b’ respectively.

Resistance




By ampere’s Law:

fH dL = 1

de — Circumference of circular path
between a and b =2T11r
H =L =i
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E due to an infinitely long conductor

A

E = i
S — Equation (1)

Where A is the charge density.
The potential difference between the
conductors is

2me  \a
E in terms of V from (1) and (2) is
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V=—-In (—) Equation (2)
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Power density P = 3 H

Since E and H are always perpendicular to
each other

PF=HE~H
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The total power will be given by the
integration of power density P over any cross
section surface.

Let the elemental surface already be 21rrdr

I
Total power W — f (27[7”) dr
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W—In _) I(In )I

W =VI

i.,e. The power flow along the cable is the
product of V and |
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